
High-Level Synthesis (HLS) tools provide facilities for the development of specialized hardware accelerators (HWacc). However, the verification stage is still the longest phase in the development life-cycle. Unlike in the software industry, HLS tools lack testing frameworks that could cover the whole design flow, especially the on-board verification stage of the generated RTL. This work introduces a framework for on-board verification of HLS-based modules by using reconfigurable systems and Docker containers with the aim to automate the verification process and preserve a clean testing environment, making the testbed reusable across different stages of the design flow. Moreover, our solution features a mechanism to check timing requirements of the HWacc. We have applied our solution to the C-kernels of the CHStone Benchmark on a Zedboard, in which the on-board verification process has been accelerated up to four times.
on-board verification, high-level synthesis, Field-Programmable Gate Arrays (FPGA), testing, docker
on-board verification, high-level synthesis, Field-Programmable Gate Arrays (FPGA), testing, docker
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
