Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2008
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isotriviality is equivalent to potential good reduction for endomorphisms of ${\mathbb P}^N$ over function fields

Authors: Petsche, Clayton; Szpiro, Lucien; Tepper, Michael;

Isotriviality is equivalent to potential good reduction for endomorphisms of ${\mathbb P}^N$ over function fields

Abstract

Let $K=k(C)$ be the function field of a complete nonsingular curve $C$ over an arbitrary field $k$. The main result of this paper states that a morphism $��:{\mathbb P}^N_K\to{\mathbb P}^N_K$ is isotrivial if and only if it has potential good reduction at all places $v$ of $K$; this generalizes results of Benedetto for polynomial maps on ${\mathbb P}^1_K$ and Baker for arbitrary rational maps on ${\mathbb P}^1_K$. We offer two proofs: the first uses algebraic geometry and geometric invariant theory, and it is new even in the case N=1. The second proof uses non-archimedean analysis and dynamics, and it more directly generalizes the proofs of Benedetto and Baker. We will also give two applications. The first states that an endomorphism of ${\mathbb P}^N_K$ of degree at least two is isotrivial if and only if it has an isotrivial iterate. The second gives a dynamical criterion for whether (after base change) a locally free coherent sheaf ${\mathcal E}$ of rank $N+1$ on $C$ decomposes as a direct sum ${\mathcal L}\oplus...\oplus{\mathcal L}$ of $N+1$ copies of the same invertible sheaf ${\mathcal L}$.

Changes in this version: moved some preliminary material on non-archimedean fields to section 2; clarified the geometric proof of Theorem 1; replaced our proof of Prop. 2(c)--which had a gap in it--with a reference to the proof by Fakhruddin; corrected several small errors and typos, and added some new references

Keywords

Mathematics - Algebraic Geometry, 14G99; 14H05, 14G99, Mathematics - Number Theory, FOS: Mathematics, 14H05, Number Theory (math.NT), Algebraic Geometry (math.AG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green