
doi: 10.3390/en15207603
Traditionally, the Economic Dispatch Model (EDM) integrating Combined Heat and Power (CHP) units aims to reduce fuel costs by managing power-only, CHP, and heat-only units. Today, reducing pollutant emissions to the environment is of paramount concern. This research presents a novel honey badger optimization algorithm (HBOA) for EDM-integrated CHP units. HBOA is a novel meta-heuristic search strategy inspired by the honey badger’s sophisticated hunting behavior. In HBOA, the dynamic searching activity of the honey badger, which includes digging and honing, is separated into exploration and exploitation phases. In addition, several modern meta-heuristic optimization algorithms are employed, which are the African Vultures Algorithm (AVO), Dwarf Mongoose Optimization Algorithm (DMOA), Coot Optimization Algorithm (COA), and Beluga Whale Optimization Algorithm (BWOA). These algorithms are applied in a comparative manner considering the seven-unit test system. Various loading levels are considered with different power and heat loading. Four cases are investigated for each loading level, which differ based on the objective task and the consideration of power losses. Moreover, considering the pollutant emissions minimization objective, the proposed HBOA achieves reductions, without loss considerations, of 75.32%, 26.053%, and 87.233% for the three loading levels, respectively, compared to the initial case. Moreover, considering minimizing pollutant emissions, the suggested HBOA achieves decreases of 75.32%, 26.053%, and 87.233%, relative to the baseline scenario, for the three loading levels, respectively. Similarly, it performs reductions of 73.841%, 26.155%, and 92.595%, respectively, for the three loading levels compared to the baseline situation when power losses are considered. Consequently, the recommended HBOA surpasses the AVO, DMOA, COA, and BWOA when the purpose is to minimize fuel expenditures. In addition, the proposed HBOA significantly reduces pollutant emissions compared to the baseline scenario.
valve point loading effect, Technology, T, honey badger optimization; pollutant emissions; economic dispatch; valve point loading effect; combined heat and power units, economic dispatch, combined heat and power units, pollutant emissions, honey badger optimization
valve point loading effect, Technology, T, honey badger optimization; pollutant emissions; economic dispatch; valve point loading effect; combined heat and power units, economic dispatch, combined heat and power units, pollutant emissions, honey badger optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
