
arXiv: 1102.2707
We study Green's J-order and J-equivalence for the semigroup of all n-by-n matrices over the tropical semiring. We give an exact characterisation of the J-order, in terms of morphisms between tropical convex sets. We establish connections between the J-order, isometries of tropical convex sets, and various notions of rank for tropical matrices. We also study the relationship between the relations J and D; Izhakian and Margolis have observed that $D \neq J$ for the semigroup of all 3-by-3 matrices over the tropical semiring with $-\infty$, but in contrast, we show that $D = J$ for all full matrix semigroups over the finitary tropical semiring.
21 pages, exposition improved
Rings and Algebras (math.RA), FOS: Mathematics, Mathematics - Rings and Algebras, 20M10, 14T05, 52B20
Rings and Algebras (math.RA), FOS: Mathematics, Mathematics - Rings and Algebras, 20M10, 14T05, 52B20
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
