
arXiv: 1804.05270
Abstract In this paper, we study connections between positive entropy phenomena and the Koopman representation for actions of general countable groups. Following the line of work initiated by Hayes for sofic entropy, we show in a certain precise manner that all positive entropy must come from portions of the Koopman representation that embed into the left-regular representation. We conclude that for actions having completely positive outer entropy, the Koopman representation must be isomorphic to the countable direct sum of the left-regular representation. This generalizes a theorem of Dooley–Golodets for countable amenable groups. As a final consequence, we observe that actions with completely positive outer entropy must be mixing, and when the group is non-amenable they must be strongly ergodic and have spectral gap.
37A35, 37A15, Mathematics - Operator Algebras, FOS: Mathematics, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Operator Algebras (math.OA)
37A35, 37A15, Mathematics - Operator Algebras, FOS: Mathematics, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Operator Algebras (math.OA)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
