Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sensorsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sensors
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sensors
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sensors
Article . 2022
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Machine-Learning Approach for Automatic Detection of Wild Beluga Whales from Hand-Held Camera Pictures

Authors: Voncarlos M. Araújo; Ankita Shukla; Clément Chion; Sébastien Gambs; Robert Michaud;

Machine-Learning Approach for Automatic Detection of Wild Beluga Whales from Hand-Held Camera Pictures

Abstract

A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert’s workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales (Delphinapterus leucas) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset’s annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall.

Keywords

Chemical technology, deep learning, TP1-1185, Article, Machine Learning, automatic object detection, beluga whale monitoring, ocean protection, Animals, Humans, ocean protection; beluga whale monitoring; automatic object detection; deep learning, Ecosystem, Ships, Beluga Whale

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold