
Diffusion wake is an unambiguous part of the jet-induced medium response in high-energy heavy-ion collisions that leads to a depletion of soft hadrons in the opposite direction of the jet propagation. New experimental data on $Z$-hadron correlation in Pb+Pb collisions at the Large Hadron Collider show, however, an enhancement of soft hadrons in the direction of both the $Z$ and the jet. Using a coupled linear Boltzmann transport and hydro model, we demonstrate that medium modification of partons from the initial multiple parton interaction (MPI) gives rise to a soft hadron enhancement that is uniform in azimuthal angle while jet-induced medium response and soft gluon radiation dominate the enhancement in the jet direction. After subtraction of the contributions from MPI with a mixed-event procedure, the diffusion wake becomes visible in the near-side $Z$-hadron correlation. We further employ the longitudinal and transverse gradient jet tomography for the first time to localize the initial jet production positions in $Z/��$-jet events in which the effect of the diffusion wake is apparent in $Z/��$-hadron correlation even without the subtraction of MPI.
5 pages in LaTex with 4 figures (final published version)
General Physics, Mathematical sciences, FOS: Physical sciences, Particle and High Energy Physics, Nuclear and Plasma Physics, 530, Mathematical Sciences, Physical sciences, High Energy Physics - Phenomenology, Engineering, High Energy Physics - Phenomenology (hep-ph), Physical Sciences
General Physics, Mathematical sciences, FOS: Physical sciences, Particle and High Energy Physics, Nuclear and Plasma Physics, 530, Mathematical Sciences, Physical sciences, High Energy Physics - Phenomenology, Engineering, High Energy Physics - Phenomenology (hep-ph), Physical Sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
