
Electromagnetic field in nuclear matter and nuclei are studied. In the nuclear matter, because the expectation value of the electric charge density operator is not zero, different in vacuum, the U(1) local gauge symmetry of electric charge is spontaneously broken, and consequently, the photon gains an effective mass through the Higgs mechanism. An alternative way to study the effective mass of photon is to calculate the self-energy of photon perturbatively. It shows that the effective mass of photon is about 5.42 MeV in the symmetric nuclear matter at the saturation density ρ0 = 0.16 fm -3 and about 2.0 MeV at the surface of 238U. It seems that the two-body decay of a massive photon causes the sharp lines of electron–positron pairs in the low energy heavy ion collision experiments of 238 U + 232 Th .
[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th], Nuclear Theory, FOS: Physical sciences, heavy-ion collisions, 530, Nuclear Theory (nucl-th), photon interaction with hadrons, nuclear matter, spontaneous breaking of gauge symmetries, Nuclear Experiment (nucl-ex), Nuclear Experiment
[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th], Nuclear Theory, FOS: Physical sciences, heavy-ion collisions, 530, Nuclear Theory (nucl-th), photon interaction with hadrons, nuclear matter, spontaneous breaking of gauge symmetries, Nuclear Experiment (nucl-ex), Nuclear Experiment
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
