
Let A = (aij) be a non-negative n × n matrix, that is, aij ≥ 0, i, j = 1, …, n; n > 1. We write A ≥ 0. Let r = r(A) be the spectral radius of A; assume r > 0 throughout to avoid trivial cases. Let be the mth derivative of r with respect to the element aij, all other elements of A being held constant.
Positive matrices and their generalizations; cones of matrices, Eigenvalues, singular values, and eigenvectors, Inequalities involving eigenvalues and eigenvectors
Positive matrices and their generalizations; cones of matrices, Eigenvalues, singular values, and eigenvectors, Inequalities involving eigenvalues and eigenvectors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
