
AbstractLet Mn be the algebra of n × n matrices over an algebraically closed field of characteristic zero. For A ∊ Mn, denote by the collection of all matrices in Mn that are similar to A. In this paper we characterize those invertible linear operators ϕ on Mn that satisfy , where for some given A1,..., Ak ∊ Mn and denotes the (Zariski) closure of S. Our theorem covers a result of Howard on linear operators mapping the set of matrices annihilated by a given polynomial into itself, and extends a result of Chan and Lim on linear operators commuting with the function f(x) = xk for a given positive integer k ≥ 2. The possibility of weakening the invertibility assumption in our theorem is considered, a partial answer to a conjecture of Howard is given, and some extensions of our result to arbitrary fields are discussed.
linear operators, Canonical forms, reductions, classification, Linear transformations, semilinear transformations, Norms of matrices, numerical range, applications of functional analysis to matrix theory, Zariski closure, similarity classes
linear operators, Canonical forms, reductions, classification, Linear transformations, semilinear transformations, Norms of matrices, numerical range, applications of functional analysis to matrix theory, Zariski closure, similarity classes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
