Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Genetics a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Genetics and Metabolism
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A heuristic model for paradoxical effects of biotin starvation on carbon metabolism genes in the presence of abundant glucose

Authors: Antonio, Velazquez-Arellano; Daniel, Ortega-Cuellar; Armando, Hernandez-Mendoza; Elizabeth, Moreno-Arriola;

A heuristic model for paradoxical effects of biotin starvation on carbon metabolism genes in the presence of abundant glucose

Abstract

We recently showed that in biotin starvation in yeast Saccharomyces cerevisiae, nematode Caenorhabditis elegans and rat Rattus norvegicus, despite abundant glucose provision, the expression of genes for glucose utilization and lipogenesis were lowered, and for fatty acid β-oxidation and gluconeogenesis were raised, and glycolytic/fermentative flow was reduced. This work explored the mechanisms of these results. We show that they are associated with ATP deficit and activation of the energy stress sensor AMP kinase (AMPK; Snf1 in yeast). Analysis of microarray results revealed extensive changes of transcripts for signal transduction pathways and transcription factors AMPK, SREBP-1c, ChREBP, NAMPT, PGC-1α, mTORC1 in rat, and their homologs in worm. In yeast the altered factor transcripts were Adr1, Cat8, Sip4, Mig1, HXK2, and Rgt1. The insulin pathway was negatively enriched (in rat and worm), whereas the adiponectins and JAK/STAT pathways were increased (present only in the rat; they activate AMPK). Together, all these changes explain the effects of biotin starvation on glucose utilization, energy status and carbon metabolism gene expression in a coherent manner across three phylogenetically distant eukaryotes and may have clinical significance in humans, since the effects are reminiscent of insulin resistance. We propose a general model for integrating these results in regulatory circuitries, according to the biology of each species, based on impaired anaplerosis due to pyruvate carboxylase deficiency, that have a basic underlying logic. In a preliminary test in yeast, aspartate corrects all the alterations produced by biotin starvation.

Keywords

Male, Aspartic Acid, Transcription, Genetic, Gene Expression Profiling, TOR Serine-Threonine Kinases, Adenylate Kinase, Biotin, Saccharomyces cerevisiae, Rats, Oxygen, Glucose, Animals, RNA, Messenger, Phosphorylation, Rats, Wistar, Caenorhabditis elegans, Metabolic Networks and Pathways, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!