
pmid: 32700281
This research developed a more efficient integrated model (IM) based on combining the Nash-Sutcliffe efficiency coefficient (NSEC) and individual data mining (DM) algorithms for the spatial mapping of dust provenance in the Hamoun-e-Hirmand Basin, southeastern Iran. This region experiences severe wind erosion and includes the Sistan plain which is one of the most PM2.5-polluted regions in the world. Due to a prolonged drought over the last two decades, the frequency of dust storms in the study area is increasing remarkably. Herein, 14 factors controlling dust emissions (FCDEs) including soil characteristics, climatic variables, digital elevation map, normalized difference vegetation index, land use and geology were mapped. Correlation and collinearity among the FCDEs were examined by the Pearson test, tolerance coefficient (TC) and variance inflation factor (VIF), with the results suggesting a lack of collinearity between FCDEs. A tree-based genetic algorithm was applied to prioritize and quantify the importance weights of the FCDEs. Thirteen individual data mining models were applied for mapping dust provenance. The model performance was assessed using root mean square error, mean absolute error and NSEC. Based on clustering analysis, the 13 DM models were grouped into five clusters and then the cluster with the highest NSEC values used in an integrated modelling process. Based on the results, the IM (NSEC = 93%) outperformed the individual DM models (the NSEC values range between 51 and 92%). Using the IM, 11, 5, 7 and 77% of the total study area were classified into low, moderate, high and very high susceptibility classes for dust provenance, respectively. Overall, the results illustrate the benefits of an IM for mapping spatial variation in the susceptibility of catchment areas to act as dust sources.
Integrated modelling, Dust, Wind, Iran, Cluster analysis, Data Mining, Dust provenance susceptibility, Data mining algorithms, Environmental Monitoring
Integrated modelling, Dust, Wind, Iran, Cluster analysis, Data Mining, Dust provenance susceptibility, Data mining algorithms, Environmental Monitoring
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
