Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemosensorsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemosensors
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemosensors
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

External-Cavity Quantum Cascade Laser-Based Gas Sensor for Sulfur Hexafluoride Detection

Authors: Xingyu Pan; Yifan Zhang; Jiayu Zeng; Minghui Zhang; Jingsong Li;

External-Cavity Quantum Cascade Laser-Based Gas Sensor for Sulfur Hexafluoride Detection

Abstract

The external-cavity quantum cascade laser (ECQCL) is an ideal mid-infrared (MIR) spectral light source for determining large molecular-absorption spectral features with broad transition bands. For this paper, a gas sensor system was developed using a broadband tunable ECQCL and a direct absorption spectroscopy detection scheme with a short path absorption cell of 29.6 cm. For spectral signal detection, a cheap and miniaturized quartz crystal tuning fork- (QCTF) based light detector was used for laser signal detection. The characteristics of the QCTF detector were theoretically simulated and experimentally observed. To demonstrate this sensing technique, sulfur hexafluoride (SF6) was selected as the analyte, which can be used as an effective indicator to identify fault-types of gas-insulated electrical equipment. Preliminary results indicated that a good agreement was obtained between experimentally observed data and reference spectra according to the NIST database and previous publications, and the gas sensor system showed a good linear response to SF6 gas concentration. Finally, Allan–Werle deviation analysis indicated that detection limits of 1.89 ppm for SF6 were obtained with a 1 s integration time, which can be further improved to ~0.38 ppm by averaging up to 131 s.

Related Organizations
Keywords

SF<sub>6</sub>, laser spectroscopy; ECQCL; QCTF; gas detection; SF<sub>6</sub>, laser spectroscopy, ECQCL, QCTF, QD415-436, gas detection, Biochemistry

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold