Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bonearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bone
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparison of methods for in vivo assessment of cortical porosity in the human appendicular skeleton

Authors: Clara Sandino; David D. McErlain; Steven K. Boyd; Helen R. Buie; Britta Jorgenson;

A comparison of methods for in vivo assessment of cortical porosity in the human appendicular skeleton

Abstract

The recent advent of high-resolution peripheral quantitative computed tomography (HR-pQCT) provides new opportunities to measure in vivo human bone microarchitecture. Increasingly, cortical porosity (CtPo) is of particular interest due to its relationship with bone quality and turnover. The two approaches that have emerged to measure CtPo from HR-pQCT are threshold-based and density-based methods, and the purpose of this work was to compare the performance of each against a gold-standard synchrotron radiation micro-computed tomography (SRμCT) measurement. Human cadaveric cortical bone specimens (N=23) were measured by SRμCT and HR-pQCT, and high correlations were found for both methods. The density-based approach had an r2=0.939 (95% confidence interval (CI) of +6.17% to +20.99%) and consistently overestimated porosity as measured by SRμCT, while the threshold-based approach had an r2=0.977 and consistently underestimated porosity (95% CI of -2.60% to -10.76%). The density-based approach is prone to beam hardening artifacts and susceptible to natural variations of tissue mineral density (TMD), but is less affected by motion artifacts that may occur in in vivo scans. The threshold-based method has the advantage that it provides structural information that complements the cortical porosity measure, such as number of pores and connectivity, and can accurately detect the larger pores which are the most relevant to bone biomechanical strength. With the first generation HR-pQCT systems the accuracy of detecting pores larger than 140 μm diameter is excellent (r2=0.983; 95% CI of -4.88% to +2.45%). The accuracy of the threshold-based method will improve as new HR-pQCT systems emerge and provide a robust quantitative approach to measure cortical porosity.

Related Organizations
Keywords

Aged, 80 and over, Male, Middle Aged, Bone and Bones, Cadaver, Humans, Female, Tomography, X-Ray Computed, Porosity, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?