Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Applied Phys...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Applied Physics
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structural, morphological and thermoelectric properties of self-decorated copper selenide nanosheets synthesized at room temperature

Authors: Sarita Devi Sharma; Khasimsaheb Bayikadi; Sankar Raman; Sonnathi Neeleshwar;

Structural, morphological and thermoelectric properties of self-decorated copper selenide nanosheets synthesized at room temperature

Abstract

Abstract In this work, an economical, surfactant-free and scalable solution synthesis method at room temperature for self-decorated copper selenide (Cu2-xSe) nanosheets is reported. Structural and morphological characterizations clearly revealed the formation of single cubic phase Cu2-xSe nanosheets in nearly stoichiometric ratio. The tentative mechanism for fabrication of self-decorated Cu2-xSe nanosheets was proposed. Furthermore, nanostructured bulk Cu2-xSe by hot pressing was explored for thermoelectric performance. High electrical conductivity (1.1 × 105 S/m), moderate Seebeck coefficient (87 μV/K) and low thermal conductivity (1.11 W/mK) at 753 K were obtained. The figure of merit (ZT) ~ 0.56 and power factor (PF) ~ 860 μW/mK2 at 753 K showed better performance than some reported Cu2-xSe nanostructured or bulk counterparts under same temperature. Also, theoretically device ZT ~0.16 and efficiency up to 3% could be achieved. The results indicate that this green and novel synthesis process is an alternative to other reported time or energy consuming processes.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!