Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ TECNALIA Publication...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
TECNALIA Publications
Conference object . 2020
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Intelligent Procedure for the Methodology of Energy Consumption in Industrial Environments

Authors: Mendia, Izaskun; Gil-Lopez, Sergio; Del Ser, Javier; Grau, Iñaki; Lejarazu, Adelaida; Maqueda, Erik; Perea, Eugenio;

An Intelligent Procedure for the Methodology of Energy Consumption in Industrial Environments

Abstract

The concern of the industrial sector about the increase of energy costs has stimulated the development of new strategies for the effective management of energy consumption in industrial setups. Along with this growth, the irruption and continuous development of digital technologies have generated increasingly complex industrial ecosystems. These ecosystems are supported by a large number of variables and procedures for the operation and control of industrial processes and assets. This heterogeneous technological scenario has made industries difficult to manage by traditional means. In this context, the disruptive potential of cyber physical systems is beginning to be considered in the automation and improvement of industrial services. Particularly, intelligent data-driven approaches relying on the combination of Energy Management Systems (EMS), Manufacturing Execution Systems (MES), Internet of Things (IoT) and Data Analytics provide the intelligence needed to optimally operate these complex industrial environments. The work presented in this manuscript contributes to the definition of the aforementioned intelligent data-driven approaches, defining a systematic, intelligent procedure for the energy efficiency diagnosis and improvement of industrial plants. This data-based diagnostic procedure hinges on the analysis of data collected from industrial plants, aimed at minimizing energy costs through the continuous assessment of the production-consumption ratio of the plant (i.e. energy per piece or kg produced). The proposed methodology aims to support managers and energy-efficiency technicians to minimize the plant’s energy consumption without affecting the production and therefore, increase its competitiveness. The data used in the design of this methodology are real data from a company dedicated to the design and manufacture of automotive components and one of the main manufacturers in the automotive sector worldwide. The present methodology is under the pending patent application EU19382002.4-120.

Country
Spain
Keywords

Big data, Energy efficiency, Smart manufacturing, Cyber physical systems, Intelligent systems, Industry 4.0

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green