Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clinical Pharmacokinetics
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

Effect of Adherence on Pharmacokinetic/Pharmacodynamic Relationships of Oral Targeted Anticancer Drugs

Authors: Evelina Cardoso; Chantal Csajka; Marie P. Schneider; Nicolas Widmer;

Effect of Adherence on Pharmacokinetic/Pharmacodynamic Relationships of Oral Targeted Anticancer Drugs

Abstract

The emergence of oral targeted anticancer agents transformed several cancers into chronic conditions with a need for long-term oral treatment. Although cancer is a life-threatening condition, oncology medication adherence-the extent to which a patient follows the drug regimen that is intended by the prescriber-can be suboptimal in the long term, as in any other chronic disease. Poor adherence can impact negatively on clinical outcomes, notably because most of these drugs are given as a standard non-individualized dosage despite marked inter-individual variabilities that can lead to toxic or inefficacious drug concentrations. This has been especially studied with the prototypal drug imatinib. In the context of therapeutic drug monitoring (TDM), increasingly advocated for oral anticancer treatment optimization, unreported suboptimal adherence affecting drug intake history may lead to significant bias in the concentration interpretation and inappropriate dosage adjustments. In the same way, suboptimal adherence may also bias the results of pharmacokinetic modeling studies, which will affect in turn Bayesian TDM interpretation that relies on such population models. Detailed knowledge of the influence of adherence on plasma concentrations in pharmacokinetic studies or in routine TDM programs is however presently missing in the oncology field. Studies on this topic are therefore eagerly awaited to better pilot the treatment of cancer with the new targeted agents and to find their optimal dosage regimen. Hence, the development and assessment of effective medication adherence programs are warranted for these treatments.

Country
Switzerland
Keywords

Dose-Response Relationship, Drug, Imatinib Mesylate/administration & dosage/pharmacokinetics/pharmacology, Administration, Oral, Antineoplastic Agents, Bayes Theorem, Antineoplastic Agents/administration & dosage/pharmacokinetics/pharmacology, Models, Biological, Neoplasms/drug therapy, Medication Adherence, 615, Neoplasms, Imatinib Mesylate, Humans, Molecular Targeted Therapy, Drug Monitoring, Drug Monitoring/methods, ddc: ddc:615

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!