Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Atherosclerosisarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Atherosclerosis
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Atherosclerosis
Article . 2010
Data sources: Pure Amsterdam UMC
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Systemic MCP1/CCR2 blockade and leukocyte specific MCP1/CCR2 inhibition affect aortic aneurysm formation differently

Authors: Waard, V. de; Bot, I.; Jager, S.C.A. de; Talib, S.; Egashira, K.; Vries, M.R. de; Quax, P.H.A.; +2 Authors

Systemic MCP1/CCR2 blockade and leukocyte specific MCP1/CCR2 inhibition affect aortic aneurysm formation differently

Abstract

CCR2, the receptor for monocyte chemoattractant protein 1 (MCP1), is involved in atherosclerosis and abdominal aortic aneurysms (AAAs). Here, we explored the potential beneficial blockade of the MCP1/CCR2 pathway.We applied an AAA model in aging apolipoprotein E deficient mice with pre-existing atherosclerotic lesions. These mice were subjected to two therapeutic strategies. First, a dominant negative form of MCP1 was overexpressed in femoral muscles, resulting in circulating levels of MCP1-7ND (7ND), competing with native MCP1. In the second approach, bone marrow transplantation was performed using bone marrow cells that were infected with a lentiviral construct containing siRNA for CCR2, to specifically inhibit only leukocyte CCR2 expression.Both strategies did not influence lesion size of the advanced atherosclerotic plaques. However, 7ND induced a more fibrous plaque phenotype. Yet, surprisingly a trend in increased number and severity of AAA was observed in the 7ND group. Smooth muscle cells in the aneurysm showed decreased phosphorylated signal transducer and activator of transcription five (STAT5, P<0.01) in the 7ND group, which is indicative for a decreased proliferative and migratory (wound healing) response. This presumably resulted in the increased AAA development. In contrast, siRNA-induced inhibition of CCR2 in leukocytes led to a significant inhibition in aneurysm formation. In conclusion, systemic inhibition of the MCP1/CCR2 pathway leads to a fibrous plaque phenotype in the advanced atherosclerotic lesions, but to potential adverse effects on AAA formation, implying that for a beneficial overall therapeutic approach, specific inhibitory targeting of leukocyte CCR2 will be essential.

Country
Netherlands
Keywords

Wound Healing, Receptors, CCR2, Aneurysm MCP1 CCR2 Leukocytes STAT5 smooth-muscle-cells e-deficient mice bone-marrow in-vivo atherosclerosis ccr2 transplantation atherogenesis activation delivery, Atherosclerosis, Aneurysm, Mice, Apolipoproteins E, MCP1, Leukocytes, STAT5 Transcription Factor, CCR2, Animals, RNA, Small Interfering, STAT5, Chemokine CCL2, Aortic Aneurysm, Abdominal, Bone Marrow Transplantation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!