
Let G be a lattice-ordered group (l-group). If X ⊆ G, then letThen X’ is a convex l-subgroup of G called a polar. The set P(G) of all polars of G is a complete Boolean algebra with ‘ as complementation and set-theoretic intersection as meet. An l-subgroup H of G is large in G (G is an essential extension of H) if each non-zero convex l-subgroup of G has non-trivial intersection with H. If these l-groups are archimedean, it is enough to require that each non-zero polar of G meets H. This implies that the Boolean algebras of polars of G and H are isomorphic. If K is a cardinal summand of G, then K is a polar, and we write G = K⊞K'.
phi-extensions, locally flat vector lattices, large l- subgroup, Ordered topological structures, Algebraic properties of function spaces in general topology, hyperarchimedean vector lattice, Ordered abelian groups, Riesz groups, ordered linear spaces
phi-extensions, locally flat vector lattices, large l- subgroup, Ordered topological structures, Algebraic properties of function spaces in general topology, hyperarchimedean vector lattice, Ordered abelian groups, Riesz groups, ordered linear spaces
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
