Downloads provided by UsageCounts
AbstractWe propose a new meta-module design for two important classes of modular robots. The new meta-modules are three-dimensional, robust and compact, improving on the previously proposed ones. One of them applies to so-called edge-hinged modular robot units, such as M-TRAN, SuperBot, SMORES, UBot, PolyBot and CKBot, while the other one applies to so-called central-point-hinged modular robot units, which include Molecubes and Roombots. The new meta-modules use the rotational degrees of freedom of these two types of robot units in order to expand and contract, as to double or halve their length in each of the two directions of its three dimensions, therefore simulating the capabilities of Crystalline and Telecube robots. Furthermore, in the edge-hinged case we prove that the novel meta-module can also perform the scrunch, relax and transfer moves that are necessary in any tunneling-based reconfiguration algorithm for expanding/contracting modular robots such as Crystalline and Telecube. This implies that the use of meta-meta-modules is unnecessary, and that currently existing efficient reconfiguration algorithms can be applied to a much larger set of modular robots than initially intended. We also prove that the size of the new meta-modules is optimal and cannot be further reduced.
Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria, Informàtica--Matemàtica, :Matemàtiques i estadística::Matemàtica discreta::Combinatòria [Àrees temàtiques de la UPC], :68 Computer science::68R Discrete mathematics in relation to computer science [Classificació AMS], Computer science--Mathematics, Classificació AMS::68 Computer science::68R Discrete mathematics in relation to computer science, Article
Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria, Informàtica--Matemàtica, :Matemàtiques i estadística::Matemàtica discreta::Combinatòria [Àrees temàtiques de la UPC], :68 Computer science::68R Discrete mathematics in relation to computer science [Classificació AMS], Computer science--Mathematics, Classificació AMS::68 Computer science::68R Discrete mathematics in relation to computer science, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 47 | |
| downloads | 55 |

Views provided by UsageCounts
Downloads provided by UsageCounts