Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of Groundwater Recharge in Agro-Urban Watersheds Using Integrated SWAT-MODFLOW Model

Authors: Bisrat Ayalew Yifru; Il-Moon Chung; Min-Gyu Kim; Sun Woo Chang;

Assessment of Groundwater Recharge in Agro-Urban Watersheds Using Integrated SWAT-MODFLOW Model

Abstract

Numerical models are employed widely to evaluate the hydrological components of a watershed but, traditionally, watershed models simplify either surface or subsurface flow module. In this setup, as a bridge between groundwater and surface water regimes, aquifer recharge is the most affected segment of the water balance. Since the watershed processes are increasingly changed, the need for a comprehensive model with detailed conceptualizing capacity of both groundwater and surface water flow systems is growing. This work focuses on the spatiotemporal groundwater recharge assessment in gauged and ungauged agro-urban watersheds in South Korea using the updated SWAT-MODFLOW model, which integrates the Soil and Water Assessment Tool (SWAT2012) and Newton–Raphson formulation for Modular Finite Difference Groundwater Flow (MODFLOW-NWT) in a single executable code. Before coupling, the setup, calibration, and verification of each model were performed separately. After integration, irrigation pumps and drain cells mapping to SWAT auto-irrigation and subbasins were initiated. Automatic calibration techniques were used for SWAT and MODFLOW-NWT models, but a manual calibration was used for the integrated model. A physical similarity approach was applied to transfer parameters to the ungauged watershed. Statistical model performance indicators revealed that the low streamflow estimation was improved in SWAT-MODFLOW. The spatiotemporal aquifer recharge distribution from both the stream seepage and precipitation showed a substantial change, and most of the aquifer recharge occurs in July–September. The areal annual average recharge reaches about 18% of the precipitation. Low-lying areas receive higher recharge consistently throughout a year. Overall, SWAT-MODFLOW exhibited reasonable versatility in evaluating watershed processes and produced valuable results with reasonable accuracy. The results can be an important input for policymakers in the development of sustainable groundwater protection and abstraction strategies for the region.

Keywords

agro-urban watershed, SWAT-MODFLOW, MODFLOW-NWT, regionalization, ungauged watershed, groundwater recharge

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
gold