
We propose a new framework to homomorphically evaluate Boolean functions using the Torus Fully Homomorphic Encryption (TFHE) scheme. Compared to previous approaches focusing on Boolean gates, our technique can evaluate more complex Boolean functions with several inputs using a single bootstrapping. This allows us to greatly reduce the number of bootstrapping operations necessary to evaluate a Boolean circuit compared to previous works, thus achieving significant improvements in terms of performances. We define theoretically our approach which consists in adding an intermediate homomorphic layer between the plain Boolean space and the ciphertext space. This layer relies on so-called p-encodings embedding bits into Zp. We analyze the properties of these encodings to enable the evaluation of a given Boolean function and provide a deterministic algorithm (as well as an efficient heuristic) to find valid sets of encodings for a given function. We also propose a method to decompose any Boolean circuit into Boolean functions which are efficiently evaluable using our approach. We apply our framework to homomorphically evaluate various cryptographic primitives, and in particular the AES cipher. Our implementation results show significant improvements compared to the state of the art.
TK7885-7895, TFHE, Computer engineering. Computer hardware, Implementation, Boolean Functions, Information technology, [INFO] Computer Science [cs], T58.5-58.64, FHE
TK7885-7895, TFHE, Computer engineering. Computer hardware, Implementation, Boolean Functions, Information technology, [INFO] Computer Science [cs], T58.5-58.64, FHE
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
