Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 2010 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2010
Data sources: Datacite
Development
Article . 2010
versions View all 5 versions
addClaim

The transcription factors Nkx2.2 and Nkx2.9 play a novel role in floor plate development and commissural axon guidance

Authors: Holz, Andreas; Kollmus, Heike; Ryge, Jesper; Niederkofler, Vera; Dias, Jose; Ericson, Johan; Stoeckli, Esther T; +2 Authors

The transcription factors Nkx2.2 and Nkx2.9 play a novel role in floor plate development and commissural axon guidance

Abstract

The transcription factors Nkx2.2 and Nkx2.9 have been proposed to execute partially overlapping functions in neuronal patterning of the ventral spinal cord in response to graded sonic hedgehog signaling. The present report shows that in mice lacking both Nkx2 proteins, the presumptive progenitor cells in the p3 domain of the neural tube convert to motor neurons (MN) and never acquire the fate of V3 interneurons. This result supports the concept that Nkx2 transcription factors are required to establish V3 progenitor cells by repressing the early MN lineage-specific program, including genes like Olig2. Nkx2.2 and Nkx2.9 proteins also perform an additional, hitherto unknown, function in the development of non-neuronal floor plate cells. Here, we demonstrate that loss of both Nkx2 genes results in an anatomically smaller and functionally impaired floor plate causing severe defects in axonal pathfinding of commissural neurons. Defective floor plates were also seen in Nkx2.2+/–;Nkx2.9–/– compound mutants and even in single Nkx2.9–/– mutants, suggesting that floor plate development is sensitive to dose and/or timing of Nkx2 expression. Interestingly, adult Nkx2.2+/–;Nkx2.9–/– compound-mutant mice exhibit abnormal locomotion, including a permanent or intermittent hopping gait. Drug-induced locomotor-like activity in spinal cords of mutant neonates is also affected, demonstrating increased variability of left-right and flexor-extensor coordination. Our data argue that the Nkx2.2 and Nkx2.9 transcription factors contribute crucially to the formation of neuronal networks that function as central pattern generators for locomotor activity in the spinal cord. As both factors affect floor plate development, control of commissural axon trajectories might be the underlying mechanism.

Countries
Germany, Denmark, Switzerland
Keywords

Neural Tube, Mouse, Central pattern generators in spinal cord, 1309 Developmental Biology, Mice, 1312 Molecular Biology, Animals, In Situ Hybridization, Body Patterning, Homeodomain Proteins, Floor plate development, Stem Cells, Nkx2.9, Nkx2.2, Zebrafish Proteins, Embryo, Mammalian, Immunohistochemistry, 10124 Institute of Molecular Life Sciences, Mice, Mutant Strains, Homeobox Protein Nkx-2.2, Spinal Cord, 570 Life sciences; biology, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Green
bronze