Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ECS Meeting Abstracts
Article . 2020 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

(Invited) Lessons Learnt and Challenges Ahead the Development of Ca-Based Batteries

Authors: M. Palacin;

(Invited) Lessons Learnt and Challenges Ahead the Development of Ca-Based Batteries

Abstract

The aim to develop batteries based in multivalent metal anodes has recently reemerged as part of the worldwide quest for new energy storage technologies with high energy density. Indeed, figures of merit attainable at the cell level computed using simple models indicate that the theoretical energy densities could easily top the state-of-the-art Li-ion, with costs being potentially much lower. The viability of a rechargeable technology based on calcium has only been considered recently, after reversible plating/stripping in organic electrolytes was achieved. In the quest for suitable positive electrode materials for multivalent ions, both traditional intercalation hosts, such as TiS2 or V2O5, and alternative materials have been investigated. While V2O5 has so far attracted most attention, the interpretation of results is controversial, as changes in the diffraction pattern upon reduction might be related to the presence of water/protons in the electrolyte. Electrochemical extraction of calcium in Ca3Co2O6 is feasible but the only compound for which reversible electrochemical calcium insertion/extraction has reliably been shown to date is TiS2, despite the process being complex and non-practically viable as a result of solvent co-intercalation and high cell overpotential. Overall, there is a long and winding road to follow before reliable proof-of-concept can be achieved and technological prospects evaluated. Development of reliable experimental setups, including reference and counter electrodes, coupled to complementary characterization techniques, as well as computational tools, is mandatory if steady progress is to be achieved. Figure 1

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!