Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cell Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel EH domain protein of Saccharomyces cerevisiae, Ede1p, involved in endocytosis

Authors: Pascal Dumoulin; Bénédicte Gagny; Howard Riezman; Barbara Winsor; Rosine Haguenauer-Tsapis; Andreas Wiederkehr;

A novel EH domain protein of Saccharomyces cerevisiae, Ede1p, involved in endocytosis

Abstract

ABSTRACT Sequencing of the entire genome of S. cerevisiae has revealed the existence of five proteins containing EH domains. These are protein-protein interaction modules first described in mammalian Eps15, a protein that is involved in clathrin-dependent endocytosis. Two of the yeast proteins, End3p and Pan1p, are required for the internalization step of endocytosis. We report characterization of the nonessential ORF YBL047c which, like Eps15, encodes a protein with three N-terminal EH domains. Deletion of YBL047c leads to a defective fluid-phase endocytosis and to defective internalization of the pheromone α-factor and uracil permease. We therefore named YBL047c EDE1, for EH Domains and Endocytosis. Ede1p expressed as a chromosomally encoded fusion to the green fluorescent protein is localized in punctate cortical spots that only partially colocalize with actin patches. This localization is maintained when actin is depolymerized. Deletion of EDE1 impairs the diploid budding pattern, but has only a small impact on actin cytoskeleton organization, in contrast to the effects observed in pan1 cells and many end mutants impaired in proteins colocalizing with cortical actin patches. Genetic interaction was observed between EDE1 and RSP5, which encodes the ubiquitin ligase Rsp5p essential for ubiquitin-dependent endocytosis of many plasma membrane proteins, thus further emphasizing the functional link between Rsp5p and the EH domain proteins. We also observed genetic interaction between EDE1, and END3 or PAN1, suggesting that Ede1p might be part of a yeast EH network implicated in endocytosis.

Keywords

Saccharomyces cerevisiae Proteins, Endosomal Sorting Complexes Required for Transport, Polymers, Recombinant Fusion Proteins, Green Fluorescent Proteins, Microfilament Proteins, Ubiquitin-Protein Ligase Complexes, Saccharomyces cerevisiae, Actins, Endocytosis, Protein Structure, Tertiary, Fungal Proteins, Cytoskeletal Proteins, Luminescent Proteins, Humans, Cytoskeleton

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?