
In this paper we prove tight bounds on the combinatorial and topological complexity of sets defined in terms of $n$ definable sets belonging to some fixed definable family of sets in an o-minimal structure. This generalizes the combinatorial parts of similar bounds known in the case of semi-algebraic and semi-Pfaffian sets, and as a result vastly increases the applicability of results on combinatorial and topological complexity of arrangements studied in discrete and computational geometry. As a sample application, we extend a Ramsey-type theorem due to Alon et al., originally proved for semi-algebraic sets of fixed description complexity to this more general setting.
25 pages. Revised version. To appear in the Proc. London Math. Soc
FOS: Mathematics, Mathematics - Combinatorics, Mathematics - Logic, Combinatorics (math.CO), Logic (math.LO), 52C45
FOS: Mathematics, Mathematics - Combinatorics, Mathematics - Logic, Combinatorics (math.CO), Logic (math.LO), 52C45
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
