Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Medicinearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Medicine
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Medicine
Article . 2005
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120

Authors: Akira, Hirasawa; Keiko, Tsumaya; Takeo, Awaji; Susumu, Katsuma; Tetsuya, Adachi; Masateru, Yamada; Yukihiko, Sugimoto; +2 Authors

Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120

Abstract

Diabetes, a disease in which the body does not produce or use insulin properly, is a serious global health problem. Gut polypeptides secreted in response to food intake, such as glucagon-like peptide-1 (GLP-1), are potent incretin hormones that enhance the glucose-dependent secretion of insulin from pancreatic beta cells. Free fatty acids (FFAs) provide an important energy source and also act as signaling molecules in various cellular processes, including the secretion of gut incretin peptides. Here we show that a G-protein-coupled receptor, GPR120, which is abundantly expressed in intestine, functions as a receptor for unsaturated long-chain FFAs. Furthermore, we show that the stimulation of GPR120 by FFAs promotes the secretion of GLP-1 in vitro and in vivo, and increases circulating insulin. Because GLP-1 is the most potent insulinotropic incretin, our results indicate that GPR120-mediated GLP-1 secretion induced by dietary FFAs is important in the treatment of diabetes.

Keywords

Molecular Sequence Data, Fatty Acids, Nonesterified, Glucagon, Polymerase Chain Reaction, Peptide Fragments, Receptors, G-Protein-Coupled, Mice, Glucagon-Like Peptide 1, Animals, Humans, RNA, Messenger, Intestinal Mucosa, Protein Precursors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.1%
Top 0.1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!