
handle: 11590/125020
An integral domain R is said to be a UMT-domain if uppers to zero in R[X) are maximal t-ideals. We show that R is a UMT-domain if and only if its localizations at maximal tdeals have Prufer integral closure. We also prove that the UMT-property is preserved upon passage to polynomial rings. Finally, we characterize the UMT-property in certian pullback constructions; as an application, we show that a domain has Prufer integral closure if and only if all its overrings are UMT-domains.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
