Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fermentationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fermentation
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fermentation
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fermentation
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New Malolactic Bacteria Strains Isolated from Wine Microbiota: Characterization and Technological Properties

Authors: Răzvan Vasile Filimon; Claudiu-Ioan Bunea; Ancuța Nechita; Florin Dumitru Bora; Simona Isabela Dunca; Andrei Mocan; Roxana Mihaela Filimon;

New Malolactic Bacteria Strains Isolated from Wine Microbiota: Characterization and Technological Properties

Abstract

Malolactic fermentation (MLF) or biological decrease of wine acidity is defined as the enzymatic bioconversion of malic acid in lactic acid, a process performed by lactic acid bacteria (LAB). The procedures for the isolation of new indigenous LAB strains from the red wines produced in Copou Iasi wine center (NE of Romania) undergoing spontaneous malolactic fermentation, resulted in the obtaining of 67 catalase-negative and Gram-positive LAB strains. After testing in the malolactic fermentative process, application of specific screening procedures and identification (API 50 CH), two bacterial strains belonging to the species Oenococcus oeni (strain 13-7) and Lactobacillus plantarum (strain R1-1) with high yield of malolactic bioconversion, non-producing biogenic amines, and with active extracellular enzymes related to wine aroma, were retained and characterized. Tested in synthetic medium (MRS-TJ) for 10 days, the new isolated LAB strains metabolized over 98% of the malic acid at ethanol concentrations between 10 and 14 % (v/v), low pH (>3.0), total SO2 doses up to 70 mg/L and temperatures between 15 and 35 °C, showing high potential for future use in the winemaking process as bacterial starter cultures, in order to obtain high quality wines with increased typicity.

Keywords

malolactic bioconversion, lactic acid bacteria, TP500-660, Fermentation industries. Beverages. Alcohol, biogenic amines, extracellular enzymes, biogenic amines; extracellular enzymes; indigenous microbiota; malolactic bioconversion; lactic acid bacteria, indigenous microbiota

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold