Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Structure
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantum-mechanical and Car–Parrinello molecular dynamics simulations of infrared spectra of crystalline imidazole

Authors: Wójcik, Marek; Kwiendacz, Jacek; Boczar, Marek; Boda, Łukasz; Ozaki, Yukihiro;

Quantum-mechanical and Car–Parrinello molecular dynamics simulations of infrared spectra of crystalline imidazole

Abstract

Abstract Theoretical simulation of the bandshape and fine structure of the N–H(D) stretching band is presented for imidazole and its deuterated derivative taking into account adiabatic coupling between the high-frequency N–H(D) stretching and the low-frequency N⋯N stretching vibrations, anharmonicity of the potentials for the low-frequency vibrations in the ground and excited state of the N–H(D) stretching mode, Fermi resonance between the N–H(D) stretching and the first overtone of the N–H(D) bending vibrations, and electric anharmonicity. The vibrational potential functions describing N–H and N⋯N stretching modes have been obtained from ab initio calculations. The effect of deuteration has been successfully reproduced by our model calculations. Infrared, far-infrared, Raman and low-frequency Raman spectra of the polycrystalline imidazole have been recorded. The geometry and experimental frequencies are compared with the results of harmonic MP2/6-311++G ** and anharmonic B3LYP/6-311++G ** calculations. Car–Parrinello molecular dynamics was used to calculate geometry, power and infrared spectra of crystalline imidazole. The results were compared with the results of ab initio MP2/6-311++G ** static calculations previously performed for the imidazole dimer. The reconstruction of the ν N–H bandshape obtained by Car–Parrinello molecular dynamics method was compared with the results of quantum mechanical model of vibrational couplings in hydrogen-bonded dimer and with the experimental data.

Country
Poland
Keywords

hydrogen bond, quantum-mechanical calculations, vibrational spectra, imidazole, Car–Parrinello molecular dynamics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!