Views provided by UsageCounts
Species interactions drive evolution while evolution shapes these interactions. The resulting eco-evolutionary dynamics, their outcomes and their repeatability depend on how adaptive mutations available to community members affect fitness and ecologically relevant traits. However, the diversity of adaptive mutations is not well characterized, and we do not know how this diversity is affected by the ecological milieu. Here we use barcode lineage tracking to address this gap in a net commensal relationship that contains both competitive and mutualistic aspects between the yeast Saccharomyces cerevisiae and the alga Chlamydomonas reinhardtii. We find that yeast has access to many adaptive mutations with diverse ecological consequences, in particular, those that increase and reduce the yields of both species. The presence of the alga does not change which mutations are adaptive in yeast (i.e., there is no fitness trade-off for yeast between growing alone or with alga), but rather shifts selection to favor yeast mutants that increase the yields of both species and make the mutualism stronger. Thus, in the presence of the alga, adaptations contending for fixation in yeast are more likely to enhance the mutualism, even though cooperativity is not directly favored by natural selection in our system. Our results demonstrate that ecological interactions not only alter the trajectory of evolution but also dictate its repeatability; in particular, weak mutualisms can repeatably evolve to become stronger.
Funding provided by: N/A*Crossref Funder Registry ID: Award Number:
adaptive evolution, Evolution of mutualism, Saccharomyces cerevisiae, whole genome analysis, barcode lineage tracking, Chlamydomonas reinhardtii
adaptive evolution, Evolution of mutualism, Saccharomyces cerevisiae, whole genome analysis, barcode lineage tracking, Chlamydomonas reinhardtii
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 2 |

Views provided by UsageCounts