Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://repository.k...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/spawc....
Article . 2018 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interference Mitigation Via Rate-Splitting in Cloud Radio Access Networks

Authors: Alaa Alameer Ahmad; Hayssam Dahrouj; Anas Chaaban; Aydin Sezgin; Mohamed-Slim Alouini;

Interference Mitigation Via Rate-Splitting in Cloud Radio Access Networks

Abstract

Cloud-radio access networks (C-RAN) help overcoming the scarcity of radio resources by enabling dense deployment of base-stations (BSs), and connecting them to a central-processor (CP). This paper considers the downlink of a C-RAN, and evaluates rate-splitting (RS) and common-message decoding techniques, as a means to enable large-scale interference management. To this end, the paper proposes splitting the message of each user at the CP into a private part decodable at one user, and a common part decodable at a subset of users for the sole purpose of interference mitigation. The paper then focuses on maximizing the weighted sum-rate subject to backhaul capacity and transmission power constraints, so as to determine the RS mode of each user, and the associated beamforming vectors. The paper proposes solving such a complicated non-convex optimization problem using an inner-convex approximation approach, which guarantees achieving a stationary solution to the problem. Numerical results show that the proposed method provides significant gain compared to classical interference mitigation techniques that do not rely on RS and common message decoding.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average