Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institutional Reposi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.26233/he...
Other literature type . 2022
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid Quantum - Classical machine learning and applications

Authors: Μιχαλοπουλος Χρηστος http://users.isc.tuc.gr/~cmichalopoulos2; Michalopoulos Christos http://users.isc.tuc.gr/~cmichalopoulos2;

Hybrid Quantum - Classical machine learning and applications

Abstract

Σε αυτή τη διατριβή, μελετάμε τη διεπαφή μεταξύ κβαντικού υπολογισμού και μηχανικής μάθησης, και πιο συγκεκριμένα αλγορίθμων κβαντικής μηχανικής μάθησης (QML) και ορισμένων εφαρμογών τους σε προβλήματα στην Οικονομία. Ξεκινάμε ορίζοντας τα δομικά στοιχεία των κβαντικών υπολογιστών, όπως οι κβαντικές καταστάσεις και κβαντικές πύλες, μαζί με την αναλυτική παρουσίαση τριών βασικών κβαντικών αλγορίθμων για την εργασία μας: τον κβαντικό μετασχηματισμό Fourier, την εκτίμηση κβαντικής φάσης και τον αλγόριθμο εκτίμησης κβαντικού πλάτους. Συνεχίζουμε συνοψίζοντας τα βασικά στοιχεία της κλασικής μηχανικής μάθησης και αναλύουμε λεπτομερώς τις εσωτερικές λειτουργίες των νευρωνικών δικτύων και συγκεκριμένα, των παραγωγικών αντιπαραθετικών δικτύων (GANs). Στη συνέχεια, συζητάμε πώς οι κβαντικοί αλγόριθμοι μπορούν να ενσωματωθούν σε κλασικές προσεγγίσεις μηχανικής μάθησης. Αναλύουμε τους δύο κορυφαίους τομείς της κβαντικής μηχανικής μάθησης, την κβαντική μηχανική μάθηση με δυνατότητα διόρθωσης κβαντικών σφαλμάτων, και τους κβαντικούς αλγόριθμους μηχανικής μάθησης φιλικούς με συσκευές που έχουν κβαντικό θόρυβο-NISQ (Noise Intermediate Scale Quantum). Στην πρώτη περίπτωση, οι αλγόριθμοι αναμένεται να έχουν εκθετικές κβαντικές επιταχύνσεις έναντι των κλασικών αντίστοιχων, αλλά απαιτούν κβαντικούς επεξεργαστές με δυνατότητα πλήρους διόρθωσης σε κβαντικά σφάλματα που δεν έχουν ακόμη εφευρεθεί, ενώ η δεύτερη περίπτωση μπορεί να υλοποιηθεί σε τρέχουσες διαθέσιμες κβαντικές συσκευές, χωρίς ωστόσο να έχουν αποδειχθεί κβαντικές επιταχύνσεις ή άλλα κβαντικά πλεονεκτήματα για την ώρα. Στο επόμενο και κύριο μέρος της εργασίας, αναλύουμε μερικούς πρόσφατους, φιλικούς προς τις NISQ συσκευές, αλγόριθμους κβαντικής μηχανικής μάθησης, δηλαδή: υβριδικά κλασικά-κβαντικά μεταβλητά μοντέλα που αποτελούνται από κβαντική και κλασική επεξεργασία. Στο πλαίσιο αυτής της προσέγγισης, μελετάμε λεπτομερώς την κβαντική έκδοση των GAN (QGAN) και δείχνουμε πώς μπορούν να εκπαιδευτούν ώστε να παράγουν κβαντικές καταστάσεις που κωδικοποιούν και μαθαίνουν αποτελεσματικά τις κατανομές πιθανοτήτων. Συγκρίνουμε την απόδοση εκπαίδευσης των QGAN χρησιμοποιώντας διαφορετικές αρχικές κατανομές πιθανοτήτων εισόδου σε διάφορες ρυθμίσεις, π.χ.: συστήματα 3 και 4 qubits και μοντέλα με διαφορετικούς αριθμούς επαναλήψεων κβαντικών κυκλωμάτων. Αυτές οι εκπαιδευμένες κβαντικές καταστάσεις χρησιμοποιούνται στη συνέχεια μαζί με αλγόριθμους εκτίμησης κβαντικού πλάτους, για τον υπολογισμό σημαντικών ποσοτήτων στον χρηματοοικονομικό κόσμο, όπως το Ευρωπαϊκό πρόβλημα προαίρεσης αγοράς. Εφαρμόζουμε τους κβαντικούς αλγόριθμους μας σε κλασικούς προσομοιωτές και συγκρίνουμε την απόδοση για διαφορετικούς αριθμούς qubits και διαμορφώσεις και συζητάμε πιθανές μελλοντικές εφαρμογές σε άλλους τομείς.

In this thesis, we study the interface between quantum computing and machine learning, and more specifically quantum machine learning (QML) algorithms and certain applications in financial problems. We start by defining the building blocks of quantum computers, such as quantum states and quantum gates, along with the analytic presentation of three key quantum algorithms for our work: the quantum Fourier transform, the quantum phase estimation and the quantum amplitude estimation algorithm. We continue with summarizing the basics of classical machine learning and analyze in detail the inner workings of neural networks and specifically, of the generative adversarial. networks (GANs). Next, we discuss how quantum algorithms can be incorporated in classical machine learning approaches. We analyze the two leading areas of QML, the fault-tolerant QML and the Noisy-Intermediate Scale Quantum (NISQ) friendly QML algorithms; in the former case, QML algorithms are shown to have proven quantum speedups against its classical counterparts but require fault-tolerant quantum hardware that are yet-to-be setup, while the latter can be realized on the current available devices but quantum speedups, or provable quantum advantages is yet-to-be demonstrated. In the next and main part of the work, we analyze and build on some of the NISQ friendly QML algorithms, i.e: hybrid classical-quantum variational models that consist of quantum and classical processing. Within this approach, we study in details the quantum version of GANs, QGANs, and show how they can be trained to produce quantum states that efficiently encode and learn target probability distributions. We compare the training performance of the QGANs using different initial input probability distributions in various settings, e.g: 3 and 4 qubits systems, and models with different numbers of quantum circuit repetitions. These trained quantum states are then used along with quantum amplitude estimation algorithms, to compute important quantities in the financial world, such as the European call option problem found in real world markets. We implement our quantum algorithms in classical simulators and benchmark the performance for different numbers of qubits and configurations and discuss possible follow up works and applications.

Country
Greece
Related Organizations
Keywords

Κβαντική μηχανική μάθηση, Κβαντική υπολογιστική, Μηχανική μάθηση

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 127
    download downloads 69
  • 127
    views
    69
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
127
69
Green