Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecological Informati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecological Informatics
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

LeafNet: A computer vision system for automatic plant species identification

Authors: Pierre Barré; Ben C. Stöver; Kai F. Müller; Volker Steinhage;

LeafNet: A computer vision system for automatic plant species identification

Abstract

Abstract Aims Taxon identification is an important step in many plant ecological studies. Its efficiency and reproducibility might greatly benefit from partly automating this task. Image-based identification systems exist, but mostly rely on hand-crafted algorithms to extract sets of features chosen a priori to identify species of selected taxa. In consequence, such systems are restricted to these taxa and additionally require involving experts that provide taxonomical knowledge for developing such customized systems. The aim of this study was to develop a deep learning system to learn discriminative features from leaf images along with a classifier for species identification of plants. By comparing our results with customized systems like LeafSnap we can show that learning the features by a convolutional neural network (CNN) can provide better feature representation for leaf images compared to hand-crafted features. Methods We developed LeafNet, a CNN-based plant identification system. For evaluation, we utilized the publicly available LeafSnap, Flavia and Foliage datasets. Results Evaluating the recognition accuracies of LeafNet on the LeafSnap, Flavia and Foliage datasets reveals a better performance of LeafNet compared to hand-crafted customized systems. Conclusions Given the overall species diversity of plants, the goal of a complete automatisation of visual plant species identification is unlikely to be met solely by continually gathering assemblies of customized, specialized and hand-crafted (and therefore expensive) identification systems. Deep Learning CNN approaches offer a self-learning state-of-the-art alternative that allows adaption to different taxa just by presenting new training data instead of developing new software systems.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    242
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
242
Top 0.1%
Top 1%
Top 1%
gold