
Description The Interpolated Strontium Values dataset Ver. 3.1 presents the interpolated data of strontium isotopes for the southern Trans-Urals, based on the data gathered in 2020-2022. The current dataset consists of five sets of files for five various interpolations: based on grass, mollusks, soil, and water samples, as well as the average of three (excluding the mollusk dataset). Each of the five sets consists of a CSV file and a KML file where the interpolated values are presented to use with a GIS software (ordinary kriging, 5000 m x 5000 m grid). In addition, two GeoTIFF files are provided for each set for a visual reference. Average 5000 m interpolated points.kml / csv: these files contain averaged values of all three sample types. Grass 5000 m interpolated points.kml / csv: these files contain data interpolated from the grass sample dataset. Mollusks 5000 m interpolated points.kml / csv: these files contain data interpolated from the mollusk sample dataset. Soil 5000 m interpolated points.kml / csv: these files contain data interpolated from the soil sample dataset. Water 5000 m interpolated points.kml / csv: these files contain data interpolated from the water sample dataset. The current version is also supplemented with GeoTiff raster files where the same interpolated values are color-coded. These files can be added to Google Earth or any GIS software together with KML files for better interpretation and comparison. Averaged 5000 m interpolation raster.tif: this file contains a raster representing the averaged values of all three sample types. Grass 5000 m interpolation raster.tif: this file contains a raster representing the data interpolated from the grass sample dataset. Mollusks 5000 m interpolation raster.tif: this file contains a raster representing the data interpolated from the mollusk sample dataset. Soil 5000 m interpolation raster.tif: this file contains a raster representing the data interpolated from the soil sample dataset. Water 5000 m interpolation raster.tif: this file contains a raster representing the data interpolated from the water sample dataset In addition, the cross-validation rasters created during the interpolation process are also provided. They can be used as a visual reference of the interpolation reliability. The grey areas on the raster represent the areas where expected values do not differ from interpolated values for more than 0.001. The red areas represent the areas where the error exceeded 0.001 and, thus, the interpolation is not reliable. How to use it? The data provided can be used to access interpolated background values of bioavailable strontium in the area of interest. Note that a single value is not a good enough predictor and should never be used as a proxy. Always calculate a mean of 4-6 (or more) nearby values to achieve the best guess possible. Never calculate averages from a single dataset, always rely on cross-validation by comparing data from all five datasets. Check the cross-validation rasters to make sure that the interpolation is reliable for the area of interest. References The interpolated datasets are based upon the actual measured values published as follows: Epimakhov, Andrey; Kisileva, Daria; Chechushkov, Igor; Ankushev, Maksim; Ankusheva, Polina (2022): Strontium isotope ratios (87Sr/86Sr) analysis from various sources the southern Trans-Urals. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.950380 Description of the original dataset of measured strontium isotopic values The present dataset contains measurements of bioavailable strontium isotopes (87Sr/86Sr) gathered in the southern Trans-Urals. There are four sample types, such as wormwood (n = 103), leached soil (n = 103), water (n = 101), and freshwater mollusks (n = 80), collected to measure bioavailable strontium isotopes. The analysis of Sr isotopic composition was carried out in the cleanrooms (6 and 7 ISO classes) of the Geoanalitik shared research facilities of the Institute of Geology and Geochemistry, the Ural Branch of the Russian Academy of Sciences (Ekaterinburg). Mollusk shell samples preliminarily cleaned with acetic acid, as well as vegetation samples rinsed with deionized water and ashed, were dissolved by open digestion in concentrated HNO 3 with the addition of H 2 O 2 on a hotplate at 150°C. Water samples were acidified with concentrated nitric acid and filtered. To obtain aqueous leachates, pre-ground soil samples weighing 1 g were taken into polypropylene containers, 10 ml of ultrapure water was added and shaken in for 1 hour, after which they were filtered through membrane cellulose acetate filters with a pore diameter of 0.2 μm. In all samples, the strontium content was determined by ICP-MS (NexION 300S). Then the sample volume corresponding to the Sr content of 600 ng was evaporated on a hotplate at 120°C, and the precipitate was dissolved in 7M HNO 3. Sample solutions were centrifuged at 6000 rpm, and strontium was chromatographically isolated using SR resin (Triskem). The strontium isotopic composition was measured on a Neptune Plus multicollector mass spectrometer with inductively coupled plasma (MC-ICP-MS). To correct mass bias, a combination of bracketing and internal normalization according to the exponential law 88 Sr/ 86 Sr = 8.375209 was used. The results were additionally bracketed using the NIST SRM 987 strontium carbonate reference material using an average deviation from the reference value of 0.710245 for every two samples bracketed between NIST SRM 987 measurements. The long-term reproducibility of the strontium isotopic analysis was evaluated using repeated measurements of NIST SRM 987 during 2020-2022 and yielded 87 Sr/ 86 Sr = 0.71025, 2SD = 0.00012 (104 measurements in two replicates). The within-laboratory standard uncertainty (2σ) obtained for SRM-987 was ± 0.003 %.
Trans-Urals, isoscapes, strontium
Trans-Urals, isoscapes, strontium
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
