
ABSTRACTIn this paper, we present a toolset and related resources for rapid identification of viruses and microorganisms from short-read or long-read sequencing data. We present fastv as an ultra-fast tool to detect microbial sequences present in sequencing data, identify target microorganisms, and visualize coverage of microbial genomes. This tool is based on the k-mer mapping and extension method. K-mer sets are generated by UniqueKMER, another tool provided in this toolset. UniqueKMER can generate complete sets of unique k-mers for each genome within a large set of viral or microbial genomes. For convenience, unique k-mers for microorganisms and common viruses that afflict humans have been generated and are provided with the tools. As a lightweight tool, fastv accepts FASTQ data as input, and directly outputs the results in both HTML and JSON formats. Prior to the k-mer analysis, fastv automatically performs adapter trimming, quality pruning, base correction, and other pre-processing to ensure the accuracy of k-mer analysis. Specifically, fastv provides built-in support for rapid SARS-CoV-2 identification and typing. Experimental results showed that fastv achieved 100% sensitivity and 100% specificity for detecting SARS-CoV-2 from sequencing data; and can distinguish SARS-CoV-2 from SARS, MERS, and other coronaviruses. This toolset is available at:https://github.com/OpenGene/fastv.
Genes, Viral, SARS-CoV-2, Viruses, Molecular Biology, Sequence Analysis, Algorithms, Information Systems
Genes, Viral, SARS-CoV-2, Viruses, Molecular Biology, Sequence Analysis, Algorithms, Information Systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
