
doi: 10.37236/2175
If $X$ is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$-hyperbolic $($in the Gromov sense$)$ if any side of $T$ is contained in a $\delta$-neighborhood of the union of the other two sides, for every geodesic triangle $T$ in $X$. We denote by $\delta(X)$ the sharp hyperbolicity constant of $X$, i.e., $\delta(X):=\inf\{\delta\ge 0: \, X \, \text{ is $\delta$-hyperbolic}\,\}$. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. One of the main aims of this paper is to obtain quantitative information about the distortion of the hyperbolicity constant of the graph $G\setminus e$ obtained from the graph $G$ by deleting an arbitrary edge $e$ from it. These inequalities allow to obtain the other main result of this paper, which characterizes in a quantitative way the hyperbolicity of any graph in terms of local hyperbolicity.
infinite graphs, edges, Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), Infinite graphs, Gromov hyperbolicity, Graphs and linear algebra (matrices, eigenvalues, etc.), Combinatorial inequalities, geodesics
infinite graphs, edges, Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), Infinite graphs, Gromov hyperbolicity, Graphs and linear algebra (matrices, eigenvalues, etc.), Combinatorial inequalities, geodesics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
