Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - General Subjects
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biochemical and biophysical methodologies open the road for effective schistosomiasis therapy and vaccination

Authors: El Ridi, Rashika; Tallima, Hatem; Migliardo, Federica;

Biochemical and biophysical methodologies open the road for effective schistosomiasis therapy and vaccination

Abstract

Schistosomiasis caused by blood-dwelling flukes, namely Schistosoma mansoni and Schistosoma haematobium is a severe debilitating disease, widespread in sub-Saharan Africa, the Middle East, and South America. Developing and adult worms are unscathed by the surrounding immune effectors and antibodies because the parasite is protected by a double lipid bilayer armor which allows access of nutrients, while binding of specific antibodies is denied.Fluorescence recovery after bleaching, extraction of surface membrane cholesterol by methyl-β-cyclodextrin, inhibition and activation of sphingomyelin biosynthesis and hydrolysis, and elastic incoherent and quasi-elastic neutron scattering approaches have helped to clarify the basic mechanism of this immune evasion, and showed that sphingomyelin (SM) molecules in the worm apical lipid bilayer form with surrounding water molecules a tight hydrogen bond barrier. Viability of the parasite and permeability of the outer shield are controlled by equilibrium between SM biosynthesis and activity of a tegument-associated neutral sphingomyelinase (nSMase).Excessive nSMase activation by polyunsaturated fatty acids (PUFA), such as arachidonic acid (ARA) leads to disruption of the SM molecules and associated hydrogen bond network, with subsequent access of host antibodies and immune effectors to the outer membrane and eventual parasite death.ARA was predicted and shown to be a potent schistosomicide in vitro and in vivo in experimental animals and in children. Additionally, it was advocated that schistosomiasis vaccine candidates should be selected uniquely among excretory-secretory products of developing worms, as contrary to cytosolic and surface membrane antigens, they are able to activate the effector functions of the host antibodies and toxic molecules. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo".

Keywords

Arachidonic acid, Elastic incoherent and quasi-elastic neutron scattering, Hydrogen bond barrier, Neutral sphingomyelinase, Schistosoma, Sphingomyelin, Animals, Biochemistry, Biophysics, Immune Evasion, Schistosoma, Schistosomiasis, Vaccination, Biophysics, Biochemistry, Molecular Biology, Vaccination, Biophysics, Animals, Schistosoma, Schistosomiasis, Biochemistry, Immune Evasion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!