
Results of a search for new physics in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton--proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$ at a center-of-mass energy of 13 TeV collected in the period 2015--2018 with the ATLAS detector at the Large Hadron Collider. Compared to previous publications, in addition to an increase of almost a factor of four in the data size, the analysis implements a number of improvements in the signal selection and the background determination leading to enhanced sensitivity. Events are required to have at least one jet with transverse momentum above 150 GeV and no reconstructed leptons ($e$, $\mu$ or $\tau$) or photons. Several signal regions are considered with increasing requirements on the missing transverse momentum starting at 200 GeV. Overall agreement is observed between the number of events in data and the Standard Model predictions. Model-independent $95\%$ confidence-level limits on visible cross sections for new processes are obtained in the range between 736 fb and 0.3 fb. Results are also translated into improved exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, supersymmetric particles in several compressed scenarios, axion-like particles, and new scalar particles in dark-energy-inspired models. In addition, the data are translated into bounds on the invisible branching ratio of the Higgs boson.
Contribution to the total SR background uncertainty in exclusive bins of the SR, as obtained from the CR-only fit. In the table, the contribution of each source of systematic is shown as the sum in quadrature of the individual contributions represented by the corresponding nuisance parameters.
13000.0
13000.0
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
