Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geodermaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Geoderma
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Physicochemical surface properties of different biogenic silicon structures: Results from spectroscopic and microscopic analyses of protistic and phytogenic silica

Authors: Daniel Puppe; Martin Leue;

Physicochemical surface properties of different biogenic silicon structures: Results from spectroscopic and microscopic analyses of protistic and phytogenic silica

Abstract

Abstract The significance of biogenic silicon (BSi) for Si cycling in terrestrial biogeosystems has been acknowledged since decades. Its importance originates from the fact that BSi generally is more soluble than silicate minerals and thus i) controls Si fluxes from terrestrial to aquatic ecosystems and ii) plays an important role as source of readily- or plant-available Si (i.e., H 4 SiO 4 ) in soils. In this context, physicochemical surface properties of BSi structures determine their dissolution kinetics. We applied transmission Fourier transform infrared (FTIR) spectroscopy, diffuse reflectance infrared Fourier transform (DRIFT) microscopy, and confocal laser scanning microscopy (CLSM) to investigate physicochemical surface properties of different biogenic silica structures. Using these techniques we were able to detect differences on a molecular level (FTIR, DRIFT) and in surface roughness parameters (CLSM) between BSi synthesized by protists (testate amoebae, diatoms) and BSi synthesized by plants (phytoliths) as well as between fresh (extracted from plants) and aged (extracted from soils) phytoliths. While fresh phytoliths showed organic impurities that can be assigned to occluded organic matter, aged phytoliths showed additional impurities of mineral origin. This is due to the fact that the used non-destructive gravimetric extraction of phytoliths is unsuitable for a distinct differentiation between biogenic silica (phytoliths) and non-biogenic (minerogenic or microcrystalline) Si forms in general. We recommend DRIFT microscopy for analyses of phytoliths extracted from soils because this technique allows measurements of selected, single siliceous phytoliths (as well as other BSi structures). Surface roughness parameters of aged phytoliths decreased compared to the ones of fresh phytoliths indicating a decrease of specific surface areas available for dissolution processes. Physicochemical surface properties will help us to better understand the BSi status (BSi quality and quantity) of soils with implications for Si availability in soils and thus Si cycling in terrestrial biogeosystems.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!