Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Microbiolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Microbiology
Article . 1993 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gene‐specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2

Authors: A G, Hinnebusch;

Gene‐specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2

Abstract

SummaryPhosphorylation of the α subunit of eukaryotic initiation factor 2 (elF‐2α) is one of the best‐characterized mechanisms for down‐regulating total protein synthesis in mammalian cells in response to various stress conditions. Recent work indicates that regulation of the GCN4 gene of Saccharomyces cerevisiae by amino acid availability represents a gene‐specific case of translational control by phosphorylation of elF‐2α, Four short open reading frames in the leader of GCN4 mRNA (uORFs) restrict the flow of scanning ribosomes from the cap site to the GCN4 initiation codon. When amino acids are abundant, ribosomes translate the first uORF and reinitiate at one of the remaining uORFs in the leader, after which they dissociate from the mRNA. Under conditions of amino acid starvation, many ribosomes which have translated uORFI fail to reinitiate at uORFs 2‐4 and utilize the GCN4 start codon instead. Failure to reinitiate at uORFs 2‐4 in starved cells results from a reduction in the GTP‐bound form of elF‐2 that delivers charged initiator tRNAiMet to the ribosome. When the levels of elF‐2·GTP·Met‐tRNAiMet ternary complexes are low, many ribosomes will not rebind this critical initiation factor following translation of uORF1 until after scanning past uORF4, but before reaching GCN4. Phosphorylation of elF‐2 by the protein kinase GCN2 decreases the concentration of elF‐2·GTP·Met‐tRNAiMet complexes by inhibiting the guanine nucleotide exchange factor for elF‐2, which is the same mechanism utilized in mammalian cells to inhibit total protein synthesis by phosphorylation of elF‐2.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Models, Genetic, Eukaryotic Initiation Factor-2, Saccharomyces cerevisiae, DNA-Binding Proteins, Fungal Proteins, Eukaryotic Cells, Gene Expression Regulation, Fungal, Protein Biosynthesis, Amino Acids, Phosphorylation, Protein Kinases, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
138
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!