Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-INSUarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2021
Data sources: HAL-INSU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Applied Nano Materials
Article . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MgF2-Based Organized Porous Inorganic Nanofluorides as Heterogeneous Catalysts for Fluorination of 2-Chloropyridine

Authors: Goharibajestani, Zahra; Wang, Yawen; Camus-Génot, Valentine; Arrii, Sandrine; Comparot, Jean; Polteau, Baptiste; Lhoste, Jérôme; +9 Authors

MgF2-Based Organized Porous Inorganic Nanofluorides as Heterogeneous Catalysts for Fluorination of 2-Chloropyridine

Abstract

The successful preparation of organized porous inorganic fluorides (OPIFs) with a high specific surface area is demonstrated for MgF 2. For the first time, macroporous MgF 2 OPIFs with a surface area of above 200 m 2 g −1 and mesoporous MgF 2 powder were prepared through the assembly of preformed MgF 2 nanoparticles and homemade polymer templates with a tunable size. These OPIF materials have been fully examined at different synthesis stages by means of powder X-ray diffraction, N 2 sorption, scanning electron microscopy, and transmission electron microscopy analyses and 19 F and 1 H solid-state nuclear magnetic resonance. The relation between the nature, the size, and the amount of polymer template on the porous structure was deeply investigated. The MgF 2 OPIFs present a higher thermal stability under air and F 2 calcination than MgF 2 NPs as the structuration of the OPIF composite considerably slows down the crystallite growth during thermal treatment under air. OPIF materials were evaluated for the first time as heterogeneous catalysts for the fluorination of 2-chloropyridine under HF gas as a fluorinating agent at 350°C. This study evidences catalytic sites with two Lewis acidity strengths (medium and low).

Keywords

2-chloropyridine, polymer template, organized porous inorganic fluorides (OPIFs), heterogeneous catalyst, [CHIM.CATA] Chemical Sciences/Catalysis, magnesium fluoride, nanoparticles, HF gas fluorination, [CHIM.ORGA] Chemical Sciences/Organic chemistry

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Green