
It is shown that the only pseudoconvex sets with smooth boundary in $\mathbf{C}^{n}$ on which $\bar{\partial}$ satisfies Lipschitz smoothing estimates of order $1/2$ are the strongly pseudoconvex ones. Various extensions of this result are made to weakly pseudoconvex domains of finite type and in various norms. It is proved that subelliptic estimates for $\bar{\partial}$ can hold on a pseudoconvex set in $\mathbf{C}^{n}$ only if the domain is of finite type in the sense of Kohn.
32F15, 32F20
32F15, 32F20
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
