Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1103/physre...
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interface effects of quark matter: Light-quark nuggets and compact stars

Authors: Cheng-Jun Xia; Jian-Feng Xu; Guang-Xiong Peng; Ren-Xin Xu;

Interface effects of quark matter: Light-quark nuggets and compact stars

Abstract

The interface effects of quark matter play important roles in the properties of compact stars and small nuggets such as strangelets and $ud$QM nuggets. By introducing a density derivative term to the Lagrangian density and adopting Thomas-Fermi approximation, we find it is possible to reproduce the results obtained by solving Dirac equations. Adopting certain parameter sets, the energy per baryon of $ud$QM nuggets decreases with baryon number $A$ and become more stable than nuclei at $A\gtrsim 300$. The effects of quark matter symmetry energy are examined, where $ud$QM nuggets at $A\approx 1000$ can be more stable than others if large symmetry energy is adopted. In such cases, larger $ud$QM nuggets will decay via fission and the surface of an $ud$QM star will fragment into a crust made of $ud$QM nuggets and electrons, which resembles the cases of a strange star's crust. The corresponding microscopic structures are then investigated adopting spherical and cylindrical approximations for the Wigner-Seitz cells, where the droplet phase is found to be the most stable configuration with $ud$QM stars' crusts and $ud$QM dwarfs made of $ud$QM nuggets ($A\approx 1000$) and electrons. For the cases considered here, the crust thickness of $ud$QM stars is typically $\sim$200 m, which reaches a few kilometers if we neglect the interface effects and adopt Gibbs construction. The masses and radii of $ud$QM dwarfs are smaller than typical white dwarfs, which would increase if the interface effects are neglected.

Related Organizations
Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
hybrid