Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Cell & Environ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Cell & Environment
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The E3 ligase BRUTUS facilitates degradation of VOZ1/2 transcription factors

Authors: Devarshi Selote; Anna Matthiadis; Jeffrey W. Gillikin; Masa H. Sato; Terri A. Long;

The E3 ligase BRUTUS facilitates degradation of VOZ1/2 transcription factors

Abstract

AbstractBRUTUS (BTS) is an iron binding E3 ligase that has been shown to bind to and influence the accumulation of target basic helix‐loop‐helix transcription factors through 26S proteasome‐mediated degradation in Arabidopsis thaliana. Vascular Plant One‐Zinc finger 1 (VOZ1) and Vascular plant One‐Zinc finger 2 (VOZ2) are NAM, ATAF1/2 and CUC2 (NAC) domain transcription factors that negatively regulate drought and cold stress responses in plants and have previously been shown to be degraded via the 26S proteasome. However, the mechanism that initializes this degradation is unknown. Here, we show that BTS interacts with VOZ1 and VOZ2 and that the presence of the BTS RING domain is essential for these interactions. Through cell‐free degradation and immunodetection analyses, we demonstrate that BTS facilitates the degradation of Vascular plant One‐Zinc finger 1/2 (VOZ1/2) protein in the nucleus particularly under drought and cold stress conditions. In addition to its known role in controlling the iron‐deficiency response in plants, here, we report that BTS may play a role in drought and possibly other abiotic stress responses by facilitating the degradation of transcription factors, VOZ1/2.

Keywords

FMN Reductase, Arabidopsis Proteins, Ubiquitin-Protein Ligases, Blotting, Western, Arabidopsis, Real-Time Polymerase Chain Reaction, Plant Roots, Stress, Physiological, Basic Helix-Loop-Helix Transcription Factors, Immunoprecipitation, Subcellular Fractions, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!