
In this work, a mathematical framework to evaluate the performance of a finite, three dimensional (3D) unmanned aerial vehicle (UAV) network in the presence of interference is developed. The framework builds upon stochastic geometry tools and specifically the binomial point process (BPP) for the spatial distribution of the UAVs. A UAV base station (UAV-BS) reference receiver is located at the center of a sphere and communicates with the nearest transmitting UAV node, whose distance from the UAV-BS reference receiver is either fixed or random. The reverse link suffers from the presence of a single dominant interferer, whose location is random within the sphere. Closed-form expressions are derived for statistical metrics of the signal-to-interference ratio (SIR) for two scenarios, namely for fixed or random location of the desired transmitting node. Then, the impact of the location of the transmitting node on the coverage probability (CP) is studied while the average error probability and the ergodic capacity have been also analytically investigated. Finally, the theoretical results are numerically evaluated and compared to simulation to reveal some useful insights.
capacity, coverage probability, stochastic geometry, Electrical engineering. Electronics. Nuclear engineering, Binomial point process, bit error rate, Nakagami-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">m</italic> fading, TK1-9971
capacity, coverage probability, stochastic geometry, Electrical engineering. Electronics. Nuclear engineering, Binomial point process, bit error rate, Nakagami-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">m</italic> fading, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
