
Effects of the combination of extrusion pretreatment and enzymatic hydrolysis on corn starch are investigated through its microstructural and physicochemical properties. This combined modification resulted in the formation of more pores on the surface of native starches (NS), as revealed by scanning electron microscopy (SEM). Compared with either single-treatment modified starch samples, starch that was bioextruded and treated by enzymatic hydrolysis achieved higher crystallinity, more uniform pore structure, and higher gelatinization temperature than those of native porous starch, as determined by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and differential scanning calorimetry (DSC). Low-temperature nitrogen adsorption experiments showed that the specific surface area (2.52 m2/g), total pore volume (4.53 × 10−3 cm3/g), and average pore size (7.36 nm) of porous starch were significantly increased by bioextrusion combined with enzyme hydrolysis (P < 0.05). The results of hydrolysis degree (DH) also showed that bioextrusion could improve the efficiency of hydrolysis. Starch that was bioextruded followed by enzyme hydrolysis showed the highest adsorption capacity in adsorption tests of adsorption of oil (63.29%), water (162.61%), and methylene blue (6.04%). The present study suggests that the combination of bioextrusion pretreatment and enzymatic hydrolysis is an attractive alternative for preparing porous corn starches.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 64 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
