Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IJIIS: International...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A High-Performance Data Accessing and Processing System for Campus Real-time Power Usage

Authors: Sheng-Cang Chou;

A High-Performance Data Accessing and Processing System for Campus Real-time Power Usage

Abstract

With the flourishing of Internet of Things (IoT) technology, ubiquitous power data can be linked to the Internet and be analyzed for real-time monitoring requirements. Numerous power data would be accumulated to even Tera-byte level as the time goes. To approach a real-time power monitoring platform on them, an efficient and novel implementation techniques has been developed and formed to be the kernel material of this thesis. Based on the integration of multiple software subsystems in a layered manner, the proposed power-monitoring platform has been established and is composed of Ubuntu (as operating system), Hadoop (as storage subsystem), Hive (as data warehouse), and the Spark MLlib (as data analytics) from bottom to top. The generic power-data source is provided by the so-called smart meters equipped inside factories located in an enterprise practically. The data collection and storage are handled by the Hadoop subsystem and the data ingestion to Hive data warehouse is conducted by the Spark unit. On the aspect of system verification, under single-record query, these software modules: HiveQL and Impala SQL had been tested in terms of query-response efficiency. And for the performance exploration on the full-table query function. The relevant experiments have been conducted on the same software modules as well. The kernel contributions of this research work can be highlighted by two parts: the details of building an efficient real-time power-monitoring platform, and the relevant query-response efficiency for reference.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold