Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Project Euclid
Other literature type . 2020
Data sources: Project Euclid
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2020
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

Taming the pseudoholomorphic beasts in $\mathbb{R}\times(S^1\times S^2)$

Taming the pseudoholomorphic beasts in \(\mathbb{R} \times (S^1 \times S^2)\)
Authors: Gerig, Chris;

Taming the pseudoholomorphic beasts in $\mathbb{R}\times(S^1\times S^2)$

Abstract

For a closed oriented smooth 4-manifold X with $b^2_+(X)>0$, the Seiberg-Witten invariants are well-defined. Taubes' "SW=Gr" theorem asserts that if X carries a symplectic form then these invariants are equal to well-defined counts of pseudoholomorphic curves, Taubes' Gromov invariants. In the absence of a symplectic form there are still nontrivial closed self-dual 2-forms which vanish along a disjoint union of circles and are symplectic elsewhere. This paper and its sequel describes well-defined counts of pseudoholomorphic curves in the complement of the zero-set of such "near-symplectic" forms, and it is shown that they recover the Seiberg-Witten invariants (mod 2). This is an extension of Taubes' "SW=Gr" theorem to non-symplectic 4-manifolds. The main result of this paper asserts the following. Given a suitable near-symplectic form w, a tubular neighborhood N of its zero-set, and a generic w-compatible almost complex structure J on X-N, there are well-defined counts of J-holomorphic curves in a completion of the symplectic cobordism (X-N, w) which are asymptotic to Reeb orbits on the ends. They can be packaged together to form "near-symplectic" Gromov invariants as a function of spin-c structures on X.

35 pages, to appear in Geom. Topol. with grammatical edits

Related Organizations
Keywords

Gromov, Mathematics - Differential Geometry, Applications of global analysis to structures on manifolds, Symplectic field theory; contact homology, pseudoholomorphic curves, ECH, pseudoholomorphic, 53D42, Seiberg-Witten- invariants, near-symplectic, Differential Geometry (math.DG), Mathematics - Symplectic Geometry, embedded contact homology (ECH), FOS: Mathematics, Symplectic Geometry (math.SG), 57R57, Seiberg–Witten, symplectic exceptional sphere, 53D42, 57R57, Gromov invariants

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green