Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Qatar University Ins...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Emerging and Selected Topics in Power Electronics
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic Modeling and Control of Pole-Phase Modulation-Based Multiphase Induction Motor Drives

Authors: B. Prathap Reddy; Atif Iqbal; Syed Rahman; Mohammad Meraj; Sivakumar Keerthipati;

Dynamic Modeling and Control of Pole-Phase Modulation-Based Multiphase Induction Motor Drives

Abstract

Pole-phase modulation based multiphase induction motor (PPMIM) drives possess the capability of providing an extended range of speed-torque for high power traction application with the available additional degrees of freedom in the multiphase machine. As observed in previous open-loop results of PPMIM drives presented in the literature, the transient currents often exceed twice the rated currents. To address this issue, this paper focuses on the modelling and advanced control of the PPMIM drives during all possible pole-phase combinations. The dynamic mathematical modelling of the PPMIM in actual phase variable domain is presented in detail. Since this model involves time-dependent inductances and torque, the machine model equations are transformed into dq domain using transformation matrices. The transformation matrices, modelling equations in the arbitrary reference frame and multiphase inverter are modelled by considering all parameters of possible pole-phase combinations. Based on the proposed modelling equations, an indirect field oriented control (IFOC) is implemented for PPMIM drives for smoother operation in all possible modes of operation. The modelling equations, as well as IFOC of PPMIM drive, are implemented in MATLAB to illustrate the behaviour of machine during transients as well as different load torques. The proposed concepts are also validated on laboratory setup and the hardware results are demonstrating the smoother transition as well as steady state operation of PPMIM drive in pole changeovers as well as both pole-phase combinations.

Countries
India, Qatar
Keywords

multiphase inverter, Indirect field-oriented vector control, modeling, pole-phase-modulated induction motor drives

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green